HOMEご利用手順商品サンプルご利用規約お支払いご注文進行確認Q&A、お問い合せカートを見る
電気学会 電子図書館
電気学会HPへ
 HOME > 同研究会の論文誌(論文単位) > 文献詳細
*商品について
表紙はついていません(本文のみ中綴じ製本です)。
号単位でも購入できます。
すべてモノクロ印刷です。
Extended Summaryはついていません。

・会員価格 ¥550
・一般価格 ¥770
カートに入れる
こちらはBookPark「電気学会 電子図書館(IEEJ Electronic Library)」による文献紹介ページです。
会員ログイン
電気学会会員の方はこちらから一旦ログインのうえ、マイページからお入りください。
会員価格で購入することができます。
非会員の方はログインの必要はありません。このまま お進みください。
■論文No.
■ページ数 5ページ
■発行日
2020/09/01
■タイトル

A Comparative Analysis of the Dataset for Training Underwater Fish Detector based on YOLOv3

■タイトル(英語)

A Comparative Analysis of the Dataset for Training Underwater Fish Detector based on YOLOv3

■著者名 David Pich (Department of Information and Communication Systems Engineering, National Institute of Technology, Okinawa College), Katsuya Nakahira (Department of Information and Communication Systems Engineering, National Institute of Technology, Okinawa C
■著者名(英語) David Pich (Department of Information and Communication Systems Engineering, National Institute of Technology, Okinawa College), Katsuya Nakahira (Department of Information and Communication Systems Engineering, National Institute of Technology, Okinawa College)
■価格 会員 ¥550 一般 ¥770
■書籍種類 論文誌(論文単位)
■グループ名 【C】電子・情報・システム部門
■本誌 電気学会論文誌C(電子・情報・システム部門誌) Vol.140 No.9 (2020)
■本誌掲載ページ 1091-1095ページ
■原稿種別 論文/英語
■電子版へのリンク https://www.jstage.jst.go.jp/article/ieejeiss/140/9/140_1091/_article/-char/ja/
■キーワード object detection,darknet,YOLOv3,underwater fish
■要約(日本語)
■要約(英語) A spectacular diversity of fishes under a crystal clear seawater in Okinawa attracts numerous scuba divers, snorkelers around the world. With the advancement in computer vision and deep learning, object detection is much more reliable than ever and find its application almost in every industry, and also in marine leisure activity. Being able to detect and recognize all underwater objects provides both an educational and amazing experience to divers and snorkelers to explore the underworld. However, it requires a system that could work in real-time with high accuracy. This is a challenge that all deep learning-based object detection algorithm is facing since there is a trade-off between time and accuracy. YOLOv3 is one of the fastest object detection algorithms that can work in real-time. We use this to train and test on our custom dataset. We collected the underwater fish image and built our dataset that contains 3548 images. We provide a comparative analysis of the training and evaluation of three different datasets. With data augmentation, our model can achieve up to 92% of mAP, and we also show what role that negative data impact the performance of the model.
■版 型 A4
運営会社についてBookPark個人情報保護方針電気学会ホームページ
本サービスは電気学会がコンテンツワークス株式会社に委託して運営しているサービスです。
©Contents Works Inc.