 |
・会員価格 ¥440 |
・一般価格 ¥660 |
|
こちらはBookPark「電気学会 電子図書館(IEEJ Electronic Library)」による文献紹介ページです。 |
|
 |
 |
電気学会会員の方はこちらから一旦ログインのうえ、マイページからお入りください。
会員価格で購入することができます。
|
|
非会員の方はログインの必要はありません。このまま お進みください。 |
|
|
■論文No. |
CMN24026 |
■ページ数 |
5ページ |
■発行日
|
2024/03/25 |
■タイトル |
3D-Aware Generalized Instance Segmentation for AI-based Video Surveillance of Smart City Roads |
■タイトル(英語) |
3D-Aware Generalized Instance Segmentation for AI-based Video Surveillance of Smart City Roads |
■著者名 |
Joshi Sharad(Hitachi India Pvt. Limited),Ganesh Ananth(Hitachi India Pvt. Limited) |
■著者名(英語) |
Sharad Joshi(Hitachi India Pvt. Limited),Ananth Ganesh(Hitachi India Pvt. Limited) |
■価格 |
会員 ¥440 一般 ¥660 |
■書籍種類 |
研究会(論文単位) |
■グループ名 |
【C】電子・情報・システム部門 通信研究会 |
■本誌 |
2024年3月28日-2024年3月29日通信研究会
|
■本誌掲載ページ |
49-53ページ |
■原稿種別 |
英語 |
■電子版へのリンク |
|
■キーワード |
|
■要約(日本語) |
Hitachi Ltd has been building state-of-the-art computer vision solutions for manufacturing, industrial solutions, smart cities etc. AI-based visual analysis of real-world objects’ images/videos acquired using cameras is essential for various applications related to surveillance, security, and fault detection. Instance segmentation is a basic computer vision task which facilitates object-level analysis. We present a solution for generalized instance segmentation which can generalize segmentation for a larger set of categories unseen during training, unlike traditional instance segmentation methods. The proposed 3D-aware solution scales for unseen categories while saving on annotation and training costs. |
■要約(英語) |
Hitachi Ltd has been building state-of-the-art computer vision solutions for manufacturing, industrial solutions, smart cities etc. AI-based visual analysis of real-world objects’ images/videos acquired using cameras is essential for various applications related to surveillance, security, and fault detection. Instance segmentation is a basic computer vision task which facilitates object-level analysis. We present a solution for generalized instance segmentation which can generalize segmentation for a larger set of categories unseen during training, unlike traditional instance segmentation methods. The proposed 3D-aware solution scales for unseen categories while saving on annotation and training costs. |
■版 型 |
A4 |
|
|
|